The Role of Discharge Variation in Scaling of Drainage Area and Food Chain Length in Rivers

John L. Sabo,* Jacques C. Finlay,2 Theodore Kennedy,3 David M. Post4

Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.

F
ood chain length (FCL) is a key measure of the vertical structure of food webs (1, 2) that determines energy flow through ecosystems (3), carbon exchange between freshwater ecosystems and the atmosphere (4), and nutrient cycling (5). FCL is also important to human health, influencing the bioaccumulation of contaminants in top predators consumed by humans (6). Ecological theory suggests that FCL should increase with energy supply (7, 8), the available energy pool (9), and environmental stability (8). In contrast, empirical studies have revealed weak effects of energy supply (10–12) and contradictory reports of negative, positive, or null effects of environmental variation on FCL (10, 12). Recent studies show a strong effect of ecosystem size on FCL in lakes and on oceanic islands (11, 13), but the mechanisms underlying this relationship remain unclear (12, 14).

In river ecosystems, climate change and human appropriation of fresh water are altering discharge variability and the frequency of intermittency across the globe (15). These hydrologic alterations have implications for the structure of river food webs. FCL in rivers may vary with the stability of the environment [for example, \(\sigma_{HF} \) (flow variation)], ecosystem size (such as drainage area), and energy supply. All three are correlated because the magnitude of high flows, channel geometry, and the relative supply of aquatic and terrestrial energy sources (such as algae and leaf litter from riparian trees, respectively) vary with drainage area (16–18). Thus, flow variation and other putative controls of FCL may scale with drainage area and mechanically link ecosystem size to FCL. To date, no single study has addressed the simultaneous effects of energy supply, environmental variation, and ecosystem size—and correlations among these drivers—on the length of food chains in rivers or any other ecosystem.

We tested the role of ecosystem size, environmental stability, and energy supply on FCL in 36 rivers in North America. We define FCL as the maximum trophic position of stream-dwelling consumers measured via a stable isotope approach, which can accommodate omnivory and non-integer values of FCL (19). Our analysis expands on previous work on FCL in three ways. First, our study sites include a comprehensive range of values for all putative controls of FCL (20); a variation of >6 orders of magnitude in ecosystem size [drainage area (\(A_d \)) = 0.35 to 10^6 km^2], a variation of >3 orders of magnitude in energy supply [gross primary production (GPP) = 0.06 to 18.9 g of O_2 m^-2 day^-1], and high-flow variation [\(\sigma_{HF} \) = 0.03 to 12.9]. Our study sites also include both perennial and intermittent rivers, providing us with an opportunity to quantify how river drying affects riverine food web structure. Second, we used a hybrid of spectral and extreme event statistics to quantify environmental variation \([(\text{environmental stability})] \), which provides a quantitative measure of discharge variation with reference to long-term discharge patterns (21). Third, we used path analysis to quantify and compare the path coefficients of drainage area→FCL and drainage area→flow variation→FCL relationships. In doing this, we asked whether ecosystem size has direct effects on FCL, or whether these effects are indirect and mediated via scaling between drainage area and flow variability (22).

We found that FCL increased with ecosystem size and decreased with \(\sigma_{HF} \) but was unrelated to energy supply (Fig. 1), which is consistent with previous findings (23–25). Ecosystem size had similar effects on FCL when measured as drainage area or cross-sectional area (fig. S1). Food chain length ranged from ~3 (predator) to nearly 5 (tertiary predator), matching the largest range of variation in FCL of any ecosystem (10, 11). Top predators in 32 streams were fish, and these taxa were sufficiently large to be piscivorous in 29 sites (table S1). In intermittent streams, the top predator was consistently an invertebrate or an insectivorous fish.

Our results suggest that the strong effect of ecosystem size on FCL arises in part from a relationship between drainage area and flow variation and strong control of FCL by high- and low-flow events. \(\sigma_{HF} \) scaled with drainage area (Fig. 2A), but the power of the scaling relationship was significantly less steep and the mean \(\sigma_{HF} \) value was significantly higher in intermittent than in perennial rivers. Significant negative powers in both cases indicate that flow variation declines with drainage area. Attenuation of discharge variation results from spatial averaging in larger basins of asynchronous precipitation and high flows occurring in upstream portions of the drainage network. FCL increased.

References and Notes

*To whom correspondence should be addressed. E-mail: John.L.Sabo@asu.edu

1Department of Ecology, Evolution, and Environmental Sciences, School of Life Sciences, Arizona State University, Post Office Box 874501, Tempe, AZ 85287-4501, USA. 2Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA. 3Southwest Biological Science Center, U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, AZ 86001, USA. 4Department of Ecology and Evolutionary Biology, Yale University, Post Office Box 208106, 165 Prospect Street, New Haven, CT 06520-8106, USA.

www.sciencemag.org SCIENCE VOL 330 12 NOVEMBER 2010 965
Reports

Fig. 1. Test of the effect of ecosystem size, environmental variation, and energy supply on FCL. (A) Relationship between drainage area (A_d in km2) and maximum realized FCL (20) for streams with perennial (blue circles) and intermittent (red circles) flow. Data are shown on a double log plot. Circle diameter is proportional to σ_{HF}. A univariate mixed-effects linear model was used for the entire data set: $F = 10.58, df = 1.29, P < 0.005, R^2_{LR} = 0.48, R^2_{adj} = 0.44$. (C) Nonsignificant relationship between energy supply (GPP) and maximum realized FCL. Circle diameter is proportional to cross-sectional area. Mixed-effects linear model: $F = 1.37, df = 1.20, P > 0.25$.

with increasing return times of anomalous high flows (Fig. 2B), and this effect was independent of ecosystem size (Fig. 2C). The relationship between return times and FCL was asymptotic: significantly lower in systems with recent high flows (in the same year) than in systems with events occurring 1 to 5 years before FCL estimation. The shape of the relationship between high-flow return time and FCL did not differ significantly between perennial and intermittent streams, suggesting a similar effect on FCL in spite of significantly lower FCL overall in intermittent rivers. Low-flow events also constitute a form of environmental variation in rivers. Zero flows reduced FCL regardless of ecosystem size (Fig. 2D). The presence of even a single zero-flow event within the 20-year antecedent record reduced FCL by $2/3$ of a trophic level. Not all intermittent streams in our data set were small or from arid biomes (table S1). Thus, our analyses were not confounded by covariation with other factors that could potentially influence FCL.

Finally, we used path analysis to quantify the relationships between ecosystem size, environmental stability, and FCL (Fig. 3). We applied the same path model to our full data set, including both perennial and intermittent streams and a subset that included only perennial rivers. We hypothesized that the total effect of ecosystem size (A_d) on FCL was dominated by the indirect path linking A_d to FCL via hydrologic variability ($A_d \rightarrow \sigma_{HF} \rightarrow FCL$) and that the direct effect of A_d on FCL was relatively small. For the full data set, path coefficients for the effects of A_d on σ_{HF} and σ_{HF} on FCL were both significant and negative (Fig. 3A). For the perennial subset, the path coefficient for the effect of A_d on σ_{HF} was larger and less variable than in the full data set (Fig. 3B), but the effect of σ_{HF} on FCL was not significant. Path coefficients for the direct effect of A_d on FCL were not significant for either data set; however, the total (direct and indirect) effects of A_d were significant in both analyses. The indirect path
community structure (independent of their size. This property, along with the loss of large-bodied fishes. More broadly, our results have important implications for understanding how river food webs respond to human- and climate-related changes in hydrology (32-34). Intermittency can have devastating effects on animal populations via reductions in habitat volume and enhanced \(\sigma_{HF} \). We found that the top predators were piscivorous fish in perennial rivers, but in even the largest intermittent stream, the top predators were invertebrates or small-bodied fish. Thus, river drying will probably decrease FCL through the loss of large-bodied fishes. More broadly, our results suggest that further human- and climate-related changes in hydrology will have pronounced effects on the structure of river food webs.

Fig. 3. Path analysis of relationships between ecosystem size (or drainage area), dynamic stability \(\left(\frac{1}{2} \text{flow variability}\right) \), and FCL. (A) Analysis of the entire data set and of perennial and intermittent streams combined. (B) Analysis of a subset of perennial streams. Numbers are path coefficients (mean \(\pm \) bootstrapped 95% confidence limits).

\[
\begin{align*}
\text{Drainage Area, } A_d & \rightarrow \text{Food Chain Length} \\
\text{Flow Variability, } \sigma_{HF} & \rightarrow \text{Food Chain Length}
\end{align*}
\]

\[(A_d \rightarrow \sigma_{HF} \rightarrow \text{FCL}) \text{ made up } >33\% \text{ of the total effect of } A_d \text{ on FCL in perennial streams and } >60\% \text{ of this total effect in all streams.}
\]

Flow variation is paramount in determining community structure (26, 27) and trophic dynamics (28, 29) in streams, but its effect on FCL is less clear. Previous work suggests that high flows can either lengthen or shorten food chains (12, 23-25). Similarly, droughts increase, decrease, or have no significant effects on FCL (12, 30, 31). The idea that FCL increases with ecosystem size has support from different ecosystems, including streams (10-13), but the mechanism(s) underlying this relationship remain elusive. Our path analysis suggests that hydrologic variability is one mechanism potentially linking ecosystem size to FCL in rivers. This conclusion is strengthened by two additional lines of evidence. First, the return time of high-flow events has significant effects on FCL that were independent of drainage area. Second, \(\sigma_{HF} \) is consistently higher in intermittent rivers across a wide range of drainage areas. Thus, anomalous high flows occur with higher frequency in intermittent streams, independent of their size. This property, along with reduced habitat volume during periods of drying, further reduces FCL in intermittent rivers.

References and Notes

20. See supporting material on Science Online.
34. The authors thank S. Beck, M. Bernot, M. Booth, M. Caron, G. Chamoux, C. Crenshaw, D. Cunjak, D. Cassie, R. Doucet, S. J. Fisher, N. B. Grimm, R. D. Hall, T. K. Harms, B. Hunegue, K. Luttermoser, W. McDowell, G. Morin, P. Mullholland, R. J. Naiman, J. Regetz, E. Rosi-Marshall, R. Sponseller, C. U. Soykan, and L. Thompson; the Minnesota Department of Natural Resources for fish samples; the STRoud New York Watershed Project for access to study sites and metabolism data; the Los Angeles Department of Water and Power, the Coweeta Long-Term Ecological Research (LTER) project, the H. J. Andrews LTER project, Oak Ridge National Laboratory, Environment Canada, and the U.S. Forest Service for flow data. This work was supported by grants from NSF, including DEB-0515990 to J.C.F., DEB-0317137 and DEB-0635088 to J.L.S.. The work was also supported by a Sabbatical Fellowship to J.L.S. at the National Center for Ecological Analysis and Synthesis, a center funded by NSF (grant EF-0553768); the University of California, Santa Barbara; and the State of California. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. government.

Supporting Online Material

www.sciencemag.org/cgi/content/full/science.1196005/DC1

Materials and Methods

Figs. S1 to S3

Tables S1 to S3

References

3 August 2010; accepted 21 September 2010

Published online 14 October 2010; 10.1126/science.1196005

Include this information when citing this paper.